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Abstract—In this study, we introduce a novel deep rein-
forcement learning (DRL) based approach for controlling lower
limb rehabilitation exoskeletons (LLREs). Our method employs
a neural network-based controller that accurately forecasts
real-time commands for the exoskeleton’s actuators using only
proprioceptive signals from the LLRE. This controller is trained
within a sophisticated virtual simulation environment integrat-
ing a comprehensive human musculoskeletal model and an
exoskeleton interaction model. To enhance adaptability, we uti-
lized domain randomization during training to simulate diverse
patient musculoskeletal conditions. We validate the effectiveness
and robustness of our DRL-based LLRE controller across
various neuromuscular conditions during walking, evaluating
key metrics such as stability and gait symmetry. This innovative
approach supports seamless deployment of trained controllers
onto physical hardware through sim-to-real transfer, eliminat-
ing the need for patient-specific experimentation and parameter
tuning. Our work represents a significant advancement in
LLRE control methodology, promising enhanced functionality
and adaptability for real-world applications.

I. INTRODUCTION

Lower limb rehabilitation exoskeletons (LLREs) with
multi-joint actuation are increasingly used in clinics to
enhance mobility for individuals with diverse neuromuscu-
lar disorders, such as muscle weakness or paralysis [1].
Ensuring robustness and stability in LLREs for walking
assistance is crucial for patient safety. Many current LLREs
require additional support like crutches or supervision from
a healthcare provider to prevent falls during locomotion.
Some autonomous LLREs, such as Rex (Rex Bionics) and
Atalante (Wandercraft), offer independent walking capabil-
ities but often at the cost of slower speeds and increased
weight. Enabling autonomous locomotion with LLREs can
significantly boost patient confidence in clinical and home
settings. Advanced controllers that robustly manage walk-
ing assistance under various human-exoskeleton interaction
conditions are needed to achieve this goal.

Current LLRE controllers often prioritize trajectory track-
ing, which is essential in early-stage rehabilitation when
patients have limited muscle strength. However, these con-
trollers typically require laborious task-specific fitting and
parameter tuning. In this study, we introduce a deep neural
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network-based reinforcement learning (RL) controller for
LLREs that achieves robust walking control without the need
for parameter tuning. Our controller is trained exclusively
from simulations involving human-exoskeleton interactions,
using only proprioceptive signals from the LLRE. This
approach simplifies the deployment of the controller onto
physical exoskeletons.

II. MATERIAL AND METHODS
A. Simulation of Human-LLRE Interaction

A LLRE hardware shown in Fig. 1 has been developed
to assist patients with gait rehabilitation [2]. This LLRE
system has 8 total actuated DoFs, and each side includes
1 DoF for the hip flexion/extension, 1 DoF for the knee
flexion/extension, and 2 DoFs for the ankle (dorsiflex-
ion/plantarflexion and inversion/eversion). The actuators can
generate torques over 160/ Nm per DOF [3]. The total mass
of the exoskeleton is 20.4kg and the frame of the exoskeleton
was 3D printed with reinforced carbon fiber between layers.
To simulate realistic human exoskeleton interaction, a full-
body human musculoskeletal model [6] was integrated with
the LLRE to create realistic human-exoskeleton interaction
forces and constraints. The muscles were modeled with a
Hill-type model to generate forces and act on the bones
through each muscle’s origin and insertion points. The LLRE
has straps around the hip, femur and tibia to constraint the
human motion, with force interaction simulated with linear
bushing elements [4].

B. Learning Framework

Our innovative deep neural network and RL-based robust
controller for LLREs utilizes a decoupled offline human-
exoskeleton simulation training with three independent neu-
ral networks (as shown in Fig. 1A-B). Each network is mod-
eled as a Multi-Layer Perception (MLP). The exoskeleton
controller is driven by a MLP control policy (the motion
imitation network in the figure) that acts on a stream of
the LLRE’s proprioceptive signals, including joint kinematic
states (e.g. from joint encoder data), and subsequently pre-
dicts real-time position control targets for the actuated joints.
The control policy are trained with rewards including track-
ing of a provided normative walking trajectory that is crafted
for this LLRE. Two other neural networks are connected
with the control policy to predict the interaction forces and
muscle coordination. To further increase the robustness of
the control policy against different human conditions, domain
randomization are employed during training that includes not
only randomization of exoskeleton dynamics properties but,
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Fig. 1. A-B: Overview of the modular, decoupled RL-based walking control
framework of the LLRE with human-in-the-loop. C: Snapshots of a walking
motion with LLRE assistance for a subject with muscle weakness, displaying
muscle activation in color.

more importantly, randomization of human muscle strength
to simulate the variability of the patient’s disability. For
examples, muscle weakness are modeled by reducing all
muscles’ maximum isometric force (strength) by half. Left
Hemiplegia and quadriplegic conditions are modeled by
vanishing the active forces of the muscles on the left side
and both sides, respectively. Through this decoupled deep
reinforcement learning framework, the trained controller
of LLREs offers the potential to provide reliable walking
assistance to human with different degrees of neuromuscular
disorders without any control parameters tuning.

III. RESULTS

Our learned controllers of the LLRE was able to perform
balanced walking motion autonomously with subjects of
different muscular conditions, including healthy individuals
and those with passive or quadriplegic muscles, muscle
weakness, and left hemiplegia. In Fig. 1C, a predicted
walking motion with LLRE assistance for a subject with
muscle weakness is shown. To demonstrate the robustness
of the controller, we conducted statistics analysis of walking
under these four human conditions with 100 walking gait
cycles each. The root mean square error (RMSE) of joint
tracking accuracy for the hip, knee, and ankle angle are all
within 5.3 degrees. We used a symmetry index R = Xp/Xy,
to qualify the gait symmetry between the right and left legs,
with X and X denoting the mean joint angles of the right
leg and the left leg, respectively. The symmetry index of the
hip, knee, and ankle flexion angles all stayed within 0.82
and 1.12, except for the hip (1.49) in the left hemiplegia
condition. We further compared controllers trained with and
without muscle strength randomization, evaluated over 100
walking trials (40 cycles each) for each of the four con-
ditions. With muscle randomization, the controller showed
significantly higher success rates (SR) of maintaining balance
on all conditions than that trained without muscle strength
randomization.

IV. DISCUSSION

Our method trains the LLRE controller from decoupled
offline human-exoskeleton simulations and this decoupled
structure enables the trained control policy to use only
proprioceptive information of the LLRE to predict control
commands. This consequently facilitates straightforward de-
ployment of the controller to the physical exoskeleton. After
acquiring a trained parameter set (weights and bias) of the
MLP control policy from deep reinforcement learning, we
can deploy the controller to the physical LLRE system. We
can build the same MLP in Matlab and load the trained
parameter set and then utilize the Matlab program to interface
with the hardware and activate the neural network for control.
The Matlab program will use a low-level torque control
architecture composed of an inner-loop current control and
an outer-loop torque control with various feedback signals.

V. CONCLUSION

A universal, RL-based walking controller was trained and
virtually tested on a LLRE system to verify its effectiveness
and robustness in assisting users with different disabilities
such as passive muscles (quadriplegic), muscle weakness, or
hemiplegia conditions without any control parameters tuning.
The decoupled network structure allows us to isolate the
LLRE control policy network for testing and sim-to-real
transfer since it uses only proprioceptive information of the
LLRE (joint sensory state) as the input. This RL training
framework can be extended for other activities such as squat-
ting [5] and sit-to-stand due to it motion imitation capability.
It can also be extended to develop controllers tailored for
patients with other pathologic conditions such as muscle
contracture, spasticity, cerebral palsy, potentially requiring
further adjustment or randomization of muscle parameters
such as optimal fiber lengths or muscle contraction intensity
for spasticity.
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